Categories

Hot Products

News

What Is Basic Waterjet Principles
Sep 07, 2018

Waterjets are fast, flexible, reasonably precise, and in the last few years have become friendly and easy to use. They use the technology of high-pressure water being forced through a small hole (typically called the "orifice" or "jewel") to concentrate an extreme amount of energy in a small area. The restriction of the tiny orifice creates high pressure and a high-velocity beam, much like putting your finger over the end of a garden hose.

Pure waterjets use the beam of water exiting the orifice to cut soft material like diapers, candy bars, and thin soft wood, but are not effective for cutting harder materials.

Diagram of a generic water jet  Typical design of a pure waterjet nozzle


The inlet water for a pure waterjet is pressurized between 20,000 and 60,000 Pounds Per Square Inch (PSI) (1300 to 6200 bar). This is forced through a tiny hole in the jewel, which is typically 0.007" to 0.020" in diameter (0.18 to 0.4 mm). This creates a very high-velocity, very thin beam of water (which is why some people refer to waterjets as "water lasers") traveling as close to the speed of sound (about 600 mph or 960 km/hr).

An abrasivejet starts out the same as a pure waterjet. As the thin stream of water leaves the jewel, however, abrasive is added to the the stream and mixed. The high-velocity water exiting the jewel creates a vacuum which pulls abrasive from the abrasive line, which then mixes with the water in the mixing tube. The beam of water accelerates abrasive particles to speeds fast enough to cut through much harder materials.


WHP_water_jet_cutter_head.jpgA diagram of a water jet cutter.

#1: high-pressure water inlet. #2: jewel (ruby or diamond) . #3: abrasive (garnet). #4: mixing tube. #5: guard. #6: cutting water jet. #7: cut material

The cutting action of an abrasivejet is two-fold. The force of the water and abrasive erodes the material, even if the jet is stationary (which is how the material is initially pierced). The cutting action is greatly enhanced if the abrasivejet stream is moved across the material and the ideal speed of movement depends on a variety of factors, including the material, the shape of the part, the water pressure and the type of abrasive. Controlling the speed of the abrasivejet nozzle is crucial to efficient and economical machining.


  • QR CODE
  • facebook